Search results for "Amino acid homeostasis"

showing 4 items of 4 documents

Arabidopsis plants deficient in plastidial glyceraldehyde-3-phosphate dehydrogenase show alterations in abscisic acid (ABA) signal transduction: inte…

2010

Abscisic acid (ABA) controls plant development and regulates plant responses to environmental stresses. A role for ABA in sugar regulation of plant development has also been well documented although the molecular mechanisms connecting the hormone with sugar signal transduction pathways are not well understood. In this work it is shown that Arabidopsis thaliana mutants deficient in plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase (gapcp1gapcp2) are ABA insensitive in growth, stomatal closure, and germination assays. The ABA levels of gapcp1gapcp2 were normal, suggesting that the ABA signal transduction pathway is impaired in the mutants. ABA modified gapcp1gapcp2 gene expressio…

0106 biological sciencesPhysiologyArabidopsisPlant Science01 natural sciencesSerine03 medical and health scienceschemistry.chemical_compoundAmino acid homeostasisPlant Growth RegulatorsGene Expression Regulation PlantArabidopsisArabidopsis thalianaPlastidsAbscisic acidGlyceraldehyde 3-phosphate dehydrogenase030304 developmental biologyglyceraldehyde-3-phosphate dehydrogenase0303 health sciencesbiologyArabidopsis Proteinsorganic chemicalsfungiGlyceraldehyde-3-Phosphate Dehydrogenasesfood and beveragessugar signallingglycolysisbiology.organism_classificationResearch Papers3. Good healthGAPCpchemistryBiochemistryABAABA signal transductionbiology.proteinCarbohydrate MetabolismSignal transductionSugar signal transduction010606 plant biology & botanyAbscisic AcidSignal Transduction
researchProduct

Serine in plants: biosynthesis, metabolism, and functions

2014

Serine (Ser) has a fundamental role in metabolism and signaling in living organisms. In plants, the existence of different pathways of Ser biosynthesis has complicated our understanding of this amino acid homeostasis. The photorespiratory glycolate pathway has been considered to be of major importance, whereas the nonphotorespiratory phosphorylated pathway has been relatively neglected. Recent advances indicate that the phosphorylated pathway has an important function in plant metabolism and development. Plants deficient in this pathway display developmental defects in embryos, male gametophytes, and roots. We propose that the phosphorylated pathway is more important than was initially thou…

GametophyteEmbryoPlant ScienceMetabolismPlantsBiologyPlant RootsSerinechemistry.chemical_compoundBiosynthesischemistryBiochemistryAmino acid homeostasisGene Expression Regulation PlantStress PhysiologicalSeedsSerinePhosphorylationPhosphorylationPhotosynthesisGlycolysisFunction (biology)Plant ProteinsTrends in Plant Science
researchProduct

Liver intracellular L-cysteine concentration is maintained after inhibition of the trans-sulfuration pathway by propargylglycine in rats.

1997

To study the fate ofl-cysteine and amino acid homeostasis in liver after the inhibition of the trans-sulfuration pathway, rats were treated with propargylglycine (PPG). At 4 h after the administration of PPG, liver cystathionase (EC4.4.1.1) activity was undetectable,l-cystathionine levels were significantly higher,l-cysteine was unchanged and GSH concentration was significantly lower than values found in livers from control rats injected intraperitoneally with 0.15 M-NaCl. The hepatic levels of amino acids that are intermediates of the urea cycle,l-ornithine,l-citrulline andl-arginine and blood urea were significantly greater. Urea excretion was also higher in PPG-treated rats when compared…

Malemedicine.medical_specialtyGlycineMedicine (miscellaneous)Protein degradationchemistry.chemical_compoundCystathionineMethionineAmino acid homeostasisInternal medicineBlood plasmamedicineAnimalsUreaCysteineRats Wistarchemistry.chemical_classificationNutrition and DieteticsChemistryCystathionine gamma-LyaseMetabolismGlutathioneGlutathioneAmino acidAcetylcysteineRatsEndocrinologyLiverUrea cycleAlkynesDepression ChemicalUreasense organsThe British journal of nutrition
researchProduct

Interactions between abscisic acid and plastidial glycolysis in Arabidopsis

2011

[EN] The phytohormone abscisic acid (ABA) controls the development of plants and plays a crucial role in their response to adverse environmental conditions like salt and water stress.1-3 Complex interactions between ABA and sugar signal transduction pathways have been shown. However, the role played by glycolysis in these interactions is not known. In the associated study,4 we investigated the interactions between plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPCp) and ABA signal transduction in Arabidopsis. We followed physiological, genetic and genomic approaches to understand the processes and mechanisms underlying the ABAglycolysis interactions. Our results indicated …

PlastidArabidopsisPlant Sciencechemistry.chemical_compoundAmino acid homeostasisArabidopsisTranscriptional regulationBIOQUIMICA Y BIOLOGIA MOLECULARHomeostasisPlastidsAmino AcidsTranscription factorAbscisic acidGlyceraldehyde 3-phosphate dehydrogenasebiologyArabidopsis Proteinsorganic chemicalsfungiGlyceraldehyde-3-Phosphate Dehydrogenasesfood and beveragesbiology.organism_classificationArticle AddendumGAPCpSugar-ABA interactionschemistryBiochemistryMutationABA signal transductionbiology.proteinCarbohydrate MetabolismGlyceraldehyde- 3-phosphate dehydrogenaseSignal transductionSugar signal transductionGlycolysisAbscisic AcidSignal Transduction
researchProduct